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In this paper a new chaotic system reported. Some basic dynamical properties of the new attractor are demonstrated in 
terms of equilibria, Jacobian matrices, Lyapunov exponents, chaotic waveform in time domain, continuous frequency 
spectrum and its hyperchaos case. The new system and its hyperchaos case are examined in Matlab-Simulink. The new 
system has seven terms, two quadratic nonlinearities and has rich dynamic behaviours.  
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1. Introduction 
 

Chaos has been found to be useful, or has great 

potential to be useful, in many disciplines, for example, 

information processing, collapse prevention of power 

systems, high-performance circuits and devices, 

thorough liquid mixing with low power consumption 

[1]. In 1963, Lorenz found the first chaotic attractor in a 

three-dimensional autonomous system when he studied the 

atmospheric convection [2], In 1976, Rössler carried out 

an important work, which rekindled the interest in low 

dimensional dissipative dynamical systems [3]. In 1979, 

Rössler himself proposed an even simpler (algebraic) 

system [4]. Sprott embarked upon an extensive search [5] 

for autonomous three dimensional chaotic systems with 

fewer than seven terms in the right hand side of the model 

equations. Sprott considered general three dimensional 

ordinary differential equations with quadratic 

nonlinearities. Using the numerical search several 

thousand chaotic cases were found. 19 cases (Labeled by 

‘A’ to ‘S’) appear to be distinct in the sense that there is no 

obvious transformation of one to another. In these 19 (‘A’ 

to ‘S’) cases, ‘A’ to ‘E’ (five) have five terms and two 

nonlinearities while cases ‘F’ to ‘S’ (fourteen) have six 

terms and one nonlinearity in the right hand side. Finally 

in the conclusive paragraph Sprott stated that “Method 

employed can not guarantee that these are the simplest 

chaotic systems of ordinary differential equations or that 

all the chaotic systems of three-dimensional ordinary 

differential equations with five terms and two quadratic 

nonlinearities or with six terms and one quadratic 

nonlinearity have been discovered. However the cases 

with five terms appeared early and often in the search, and 

it is likely they have all been found. New cases with six 

terms were still being found and thus additional such cases 

probably exist”. Recently, there has been increasing 

interest in exploiting chaotic dynamics in engineering 

applications, where some attention has been focused on 

effectively creating chaos via simple physical systems 

such as electronic circuits [6]-[17]. 

Motivated by these works, this article introduces one 

more simple three-dimensional quadratic autonomous 

system. The aim of this letter is to present a simple, 

interesting and complex three-dimensional chaotic system, 

which can depict complex 1-scroll chaotic attractors 

simultaneously. Section 2 explains the new chaotic 

system. In this section, the simulation result of the new 

system using Matlab-Simulink modelling (Fig. 1.h) is 

obtained. In Section 3 some basic properties and finally in 

Section 4 forming mechanism of this new chaotic attractor 

structure, hyperchaos behaviour of the new system are 

given respectively.  

 

 

2. A new seven term chaotic system 
 

Based on the chaotification analysis [5] the third 

differential equation of the Sprott S case may be added 

with a term 𝑢1 = −𝑏 ∗ 𝑦2 , i.e. �̇� = 1 + 𝑥 − 𝑏 ∗ 𝑦2. A new 

chaotic system is therefore expressed as a set of two first 

order and one second order, autonomous, ordinary 

differential equations with seven terms as follows: 

 

�̇�  = −𝑥 − 𝑎 ∗ 𝑦 

�̇�  = 𝑥 + 𝑧2                                     (1) 

𝑧 ̇ = 1 + 𝑥 − 𝑏 ∗ 𝑦2 
 

where 𝑎 = 4, 𝑏 = 0.2. Using MATLAB program, the 

numerical simulation have been completed and displayed 

in Figure 1(a)-(h), three dimensional, x-y, x-z and y-z 

phase portraits, x(t) waveform, y(t) waveform, z(t) 

waveform and  the MATLAB-Simulink modelling, 

respectively.  

The initial conditions are selected as (𝑥0, 𝑦0, 𝑧0) =
(0.67, 0.0067,0.89). 
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(a)                                                                (b) 

  
(c)                                                (d) 

 
(e) 

 
(f) 

 
 

(g) 

 
(h) 

Fig. 1. Phase portraits, time series and simulink model of 

a new seven-term chaotic attractor, (a) x-y-z, (b) x-y, (c) 

y-z, (d) y-z, (e) x(t) waveform, (f) y(t) waveform, (g) z(t) 

waveform and (h) The MATLAB-Simulink modelling of 

the new system. 

3. Some basic properties of the new chaotic  
     system 
 

In this section, equilibria, Jacobian Matrix, Lyapunov 

exponents and being a dissipative system of the new 

chaotic attractor are analized as follows, 

 

3.1. Equilibria 

 

The Equilibria of the new system (1) can be found 

using, 

 

 −𝑥 − 4 ∗ 𝑦 = 0 

𝑥 + 𝑧2 = 0 

 1 + 𝑥 − 0.2 ∗ 𝑦2 = 0. 

 
The system has four equilibrium points, i.e. 

 

 𝐸1 = (−0.99,0.25,0.99) 

𝐸2 = (−0.99,0.25, −0.99) 

𝐸3 = (80.99, −20.25,9i) 

𝐸4 = (80.99, −20.25, −9i). 

 

3.2. Jacobian matrice 

 

For equilibrium 𝐸1 = (−0.99,0.25,0.99), system (1) 

are linearized and the Jacobian matrix (2) is defined as, 

 

𝐽1 = [
−1 −𝑎 0
1 0 2 ∗ 𝑧
1 −2 ∗ 𝑏 ∗ 𝑦 0

] = [
−1 −4 0
1 0 1.98
1 −0.1 0

] 

                                                                                           

(2) 

 

       By using |𝜆𝐼 − 𝐽1| = 0, the resulting eigenvalues of 𝐽1 

are obtained as follows where 𝜆1 is a negative real 

number, 𝜆2 and 𝜆3 are a pair of complex conjugate 

eigenvalues with positive real parts. Consequently, the 

equilibrium 𝐸1 is a saddle-focus point and the new system 

(1) is unstable at 𝐸1 equilibrium point. 

 

𝜆1 = −1.58, 𝜆2 = 0.29 + 2.24𝑖, 𝜆3 = 0.29 − 2.24𝑖 
                                                                                                                                                                            

       For equilibrium 𝐸2 = (−0.99,0.25, −0.99), the 

resulting eigenvalues are 

 

𝜆1 = 1.24, 𝜆2 = −1.12 + 2.31𝑖, 𝜆3 = −1.12 − 2.31𝑖. 
 

       For equilibrium 𝐸3 = (80.99, −20.25,9i), the 

resulting eigenvalues are 

 

𝜆1 = −0.51 + 0.01𝑖, 𝜆2 = 8.18 + 8.64𝑖, 
𝜆3 = −8.68 − 8.65𝑖. 

 

      And finally for 

equilibrium 𝐸3 = (80.99, −20.25, −9i), the resulting 

eigenvalues are 

 

𝜆1 = −0.51 − 0.01𝑖, 𝜆2 = 8.18 − 8.64𝑖, 
𝜆3 = −8.68 + 8.65𝑖, 
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respectively. 

 

 

3.3. Lyapunov exponents 

 

It is known that Lyapunov exponents are the average 

exponential rates of divergence or convergence of nearby 

trajectories in the phase space. Any system containing at 

least one positive Lyapunov exponent is defined to be 

chaotic [18]. The Lyapunov exponents of the system (1) 

are displayed in Fig. 2 and found to be 

 

𝐿1 = 0.10482, 𝐿2 = 0  and 𝐿3 = −1.1062. 

 

In addition, the Lyapunov dimension (3) of the system 

(1) is fractional as described by 

 

𝐷𝐿 = 𝑗 +
1

|𝐿𝑗+1|
∑ 𝐿𝑖

𝑗
𝑖=1 = 2 +

𝐿1+𝐿2

|𝐿3|
= 2.095.        (3) 

 

 
 

Fig. 2. Lyapunov exponents of the new chaotic system. 

 

 

The fractal nature of an attractor does not merely 

imply non-periodic orbits; it also causes nearby 

trajectories to diverge. As all strange attractors, orbits that 

are initiated from different initial conditions soon reach the 

attracting set, but two nearby orbits do not stay close to 

each other [12]. They soon diverge and follow totally 

different paths in the attractor. Therefore there is really 

chaos in this system. 

 

 

3.4 A dissipative system and existence of the   

      attractor 

 

For the divergence of flow (4) of the new system (1), 

we can obtain, 

 

∇. 𝑉 =
𝜕�̇�

𝜕𝑥
+

𝜕�̇�

𝜕𝑦
+

𝜕�̇�

𝜕𝑧
= 𝑝 = −1                 (4) 

 

As 𝑝 < 0, the system (1) is a dissipative system with 

an exponential rate of contraction as, 

 
𝑑𝑉

𝑑𝑡
= 𝑒𝑝 = 𝑒−1 

 

In the new system (1), a volume element 𝑉0 is 

apparently contracted by the flow into a volume element,  

𝑉0𝑒𝑝𝑡 = 𝑉0𝑒−𝑡 

 

in time 𝑡. This means that each volume containing the 

trajectory of this dynamical system shrinks to zero as 

𝑡 → ∞ at an exponential rate. So all this new dynamical 

system (1) orbits are eventually confined to a specific 

subset that have zero volume, the asymptotic motion 

settles on to an attractor of the new dynamics system 

(1)[18]. 

 

 
4. Forming mechanism structure of this new  
    chaotic attractor system  
 

Our new chaotic system (1) is investigated the 

forming mechanism structure by changing “b” parameter 

in 4.1 as follows. In 4.2 hyperchaos structure of the new 

system (1) is studied. 

 

4.1. Case1: For 𝑏 = 0.2, 

 

In this case, equilibrium points of the systems (1) was 

given in section 3 as shown in Fig 1(a). 

 

Case2: If 𝑏 = 0.6, (Fig. 3.a) than the system (1) has 

four equilibrium points, i.e. 

 

𝐸1 = (−0.97,0.24,0.98) 

𝐸2 = (−0.97,0.24, −0.98) 

𝐸3 = (27.63, −6.91,5.26i) 

𝐸4 = (27.63, −6.91, −5.26i). 

 

For equilibrium 𝐸1 = (−0.97,0.24,0.98) the resulting 

eigenvalues are 

 

𝜆1 = −1.55, 𝜆2 = 0.28 + 2.31𝑖, 𝜆3 = 0.28 − 2.31𝑖. 
 

For equilibrium 𝐸2 = (−0.97,0.24, −0.98) the 

resulting eigenvalues are 

 

𝜆1 = 1.30, 𝜆2 = −1.15 + 2.26𝑖, 𝜆3 = −1.15 − 2.26𝑖. 
 

For equilibrium 𝐸3 = (27.63, −6.91,5.26i) the 

resulting eigenvalues are 

 

𝜆1 = 6.22 + 6.73𝑖, 𝜆2 = −0.52 + 0.02𝑖, 
𝜆3 = −6.71 − 6.76𝑖. 

 

And finally for equilibrium 

𝐸4 = (27.63, −6.91, −5.26i) the resulting eigenvalues are 

 

𝜆1 = 6.22 − 6.73𝑖, 𝜆2 = −0.52 − 0.02𝑖, 
𝜆3 = −6.71 + 6.76𝑖, 

 

respectively. 

 

The Lyapunov exponents of this case are displayed in 

Fig. 3.b and found to be 

 

𝐿1 = 0, 𝐿2 = −0,15314  and 𝐿3 = −0.84614. 
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Fig. 3.a.  The new system with b=0.6. 

 

 
Fig. 3.b. Lyapunov Exponents. 

 

 

Case3: If  𝑏 = 1.9, (Fig 4.a) than the system (1) has 

four equilibrium points, i.e. 

 

𝐸1 = (−0.90,0.23,0.95) 

𝐸2 = (−0.90,0.23, −0.95) 

𝐸3 = (9.32, −2.33,3.05i) 

𝐸4 = (9.32, −2.33, −3.05i). 

 

For equilibrium 𝐸1 = (−0.90,0.23,0.95) the resulting 

eigenvalues are 

 

𝜆1 = −1.53, 𝜆2 = 0.26 + 2.29𝑖, 𝜆3 = 0.26 − 2.29𝑖. 
 

For equilibrium 𝐸2 = (−0.90,0.23, −0.95) the 

resulting eigenvalues are 

 

𝜆1 = 1.27, 𝜆2 = −1.14 + 2.25𝑖, 𝜆3 − 1.14 − 2.25𝑖. 
 

For equilibrium 𝐸3 = (9.32, −2.33,3.05i) the 

resulting eigenvalues are 

 

𝜆1 = 1.91 + 3.35𝑖, 𝜆2 = 0.40 − 0.10𝑖, 
𝜆3 = −3.31 − 3.24𝑖. 

 

And finally for equilibrium 

𝐸4 = (9.32, −2.33, −3.05i) the resulting eigenvalues are 

 

𝜆1 = 1.91 − 3.35𝑖, 𝜆2 = 0.40 + 0.10𝑖, 
𝜆3 = −3.31 + 3.24𝑖, 

 

respectively. 

The Lyapunov exponents of this case are displayed in 

Fig. 4.b and found to be 

 

𝐿1 = 0, 𝐿2 = −0,19954  and 𝐿3 = −0.7989 

 

 
Fig. 4.a. The new system with b=1.9 . 

 

 
 

Fig. 4.b. Lyapunov Exponents. 

 

 

4.2 Hyperchaos case of the new system 

 

The new hyperchaotic equations (5) are obtained from 

the new system (1) with initial conditions 

(𝑥0, 𝑦0 , 𝑧0, 𝑤0) = (0.67, 0.0067,0.89,0.2) as follows: 

  

�̇�  = −𝑥 − 𝑎 ∗ 𝑦 + 𝑐 ∗ 𝑤 

�̇�  = 𝑥 + 𝑧2                                    (5) 

𝑧 ̇ = 1 + 𝑥 − 𝑏 ∗ 𝑦2 

𝑤 ̇ = 𝑘 ∗ 𝑥 

 

where 𝑐 = 0.2, 𝑘 = 0.2. 

 

Using MATLAB program, the numerical simulation 

have been completed and displayed x-y, x-z, y-z and x-y-z 

phase portraits and the MATLAB-Simulink model in Figs. 

5(a)-(e), respectively. 

The new hyperchaotic system (5) has two equilibrium 

points, i.e. 

 

𝐸1 = (0, 0.73, 0, 14.51) 

𝐸2 = (0, −0.73, 0, −14.51) 

 

Jacobian matrix of the new hyperchaotic system (6) is 

defined as, 

 

𝐽 = [

−1 −𝑎 0 0
1 0 2 ∗ 𝑧 0
1 −2 ∗ 𝑏 ∗ 𝑦 0 0
0 0 0 0.2

]                   (6) 

And the eigenvalues 𝐸1, 𝐸2 are equal and as follows: 

 

𝜆1 = 0, 𝜆2 = 0.2, 𝜆3 = 0.50 + 1.94𝑖, 𝜆4 = 0.50 − 1.94𝑖. 
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                        (a)                                                           (b) 
 

     
                            (c)                                                     (d) 
  

 
(e) The Matlab-Simulink modelling of the new hyperchaos system 

 
Fig. 5. Phase portraits and simulink model of the new 

hyperchaotic system   (a) x-y, (b) x-z, (c) y-z and (d) x-y-z 

 (e)The Matlab-Simulink model. 

 

 

5. Conclusions  
 

This article introduces a new simple, three-

dimensional, quadratic and autonomous chaotic system, 

which can generate complex 1-scroll chaotic attractors 

simultaneously. Our investigation was completed using a 

combination of theoretical analysis and simulation. This 

new attractors proposed can be also realized with an 

electronic circuit and have potential for communication. 

These new attractors and their forming mechanism need 

further to study and explore. The our new chaotic and 

hyperchaotic systems have a small margin for parameter 

varying for easy analysing, as shown in the phase portraits 

of figure 1 and figure 5, respectively. The simulation 

results were produced using Matlab-Simulink programs 
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